National Bicycle \& Pedestrian Documentation Project

With the Institute of Transportation Engineers (ITE)

Transportation Research Board
January 2009

Michael Jones, Principal

Outline

- Introduction
- Background
- Objectives
- Methods
- Data Access \& Analysis
- Summary of Findings

Introduction

- Annual bicycle and pedestrian count and survey effort
- A cooperative effort between Alta Planning + Design and the ITE Pedestrian \& Bicycle Council
- Initiated in 2002
- Not funded
- Applied v. academic research
- Free service available to all public agencies and
 organizations

Background

> "Further development of modeling techniques and data sources are needed to better integrate bicycle and pedestrian travel into mainstream transportation model and planning activities."
> -FHWA, Guidebook on Methods to Estimate Non-Motorized Travel, July 1999

- The lack of hard, empirical data on bicycling and walking limits the effectiveness of all existing analytical tools.

Background

- Automobile, transit, and other modes utilize consistent, widely-accepted methods of gauging demand, volumes, and impacts that allow for short and long range planning
- Examples: level of service, trip generation rates, parking generation rates, mode split assumptions
- Almost all policy and analysis flows from these sources, including decisions on improvements, funding, and impacts

Background

- Non-motorized modes have no such consistent, uniform data collection and analysis system
- Each agency conducts counts, surveys, and analysis its own way
- No or little national sharing of data
- Result = harder to justify funding, document benefits, understand what influences walking and bicycling
- One solution to this problem: National Bicycle and Pedestrian Documentation Project

Objectives of the National Documentation Project

- Establish a consistent national methodology for conducting bicycle and pedestrian count and surveys;
- Establish a national database of bicycle and pedestrian count information generated by these consistent methods and practices; and
- Use the count and survey information to begin analysis on the correlations bicycle and pedestrian activity and local characteristics

NBDP in Use Today

- Non-motorized Transportation Pilot Project (using NBPD methodology in 4 communities)
- Caltrans Seamless Travel Study (2+ years, 80 count locations, 4 automatic count machines, new findings on correlation between volumes and independent variables)
- Over 60 agencies have sent in data/are using methodology

Methodology

- Consistent dates and times
- 1 weekday and 1 weekend day
- $2^{\text {nd }}$ week of September (primary)
- January, May, July supplemental datt
- Weekday, 7-9AM, 4-6PM (primary)
- Saturday, 12-2PM (primary)

Criteria for Count Locations

. Historical count location

- Bicycle facility
- High crash area
- Smart growth

- Transit
- Planned project
- Mix of land uses
- Stakeholder
recommendations

Pedestrian Survey

Nonmotorized Transportation Pilot Project: Pedestrian Survey

Data Access and Analysis

Data can be used for:

- Demand projections
- Exposure analysis
- Estimate of benefits
- Trip generation
- Overall trends in activity
- Facility operation and design
- Land use and design

SAFETEA-LU Funding

NHTS Household Trips

Major Findings \& Issues

- Alta does not have resources to analyze or conduct QA/QC on incoming data
- Most data is from multi-use paths
- Seamless Travel project has funded NBPD for 2 years as case study in San Diego County

Monthly Variation: East/Midwest

Monthly Variation: San Diego

Percent of Annual Total Volume by Month

Summary of Findings: 2005

Conclusion

- Unlike vehicle use patterns, there appears to be significant regional differences in seasonal patterns
- Estimating models will need regional factors
- Climate
- Visitors

Daily Variation

Multi-Use Paths: Daily Variations in Use

Weekday Hourly Variation

Weekend Hourly Variation

Conclusions

- Significant weekday variation and weekday variation
- Significant hourly variation
- No generalized 'peak' period
- Accept variation as part of normal estimating process

NBPD Aggregate Model

Results: Bicycling on the Rise

- $+103 \%$ 1999-2008 on weekdays, $+48 \%$ weekends
- $+17 \%$ 2007-2008 on weekdays, $+21 \%$ on weekends
- 72% male, 13% children
- 29% not wearing helmets
- 11 days/month average
- 10 miles average round trip

Results: Aggregate for Marin

- Pedestrians
- 115,680 daily pedestrian trips
- 81,288 saved vehicle trips
- 27,442 saved vehicle miles
- Bicyclists
- 18,428 daily bicycle trips
- 24,965 saved vehicle trips
- 37,525 saved vehicle trips

Results: Validation

Table C
Average Daily Bicycle/Pedestrian Trips: Comparing Model Outputs Marin County

	Bicyclists	Pedestrians
Alta Model	18,428	115,680
NHTS	14,128	141,283
Report to Congress		
Average	17,909	117,406

Seamless Travel

- Caltrans/TSC
- 2.5 year study
- 40 historic locations
- 40 new locations
- 80 total count locations

- AM weekday peak (all)
- Midday weekend peak (all)
- PM weekday peak (20 selected)

Peak Hour
 Count Locations

Count Technology

-Active Infrared Detection (6 sets)
Classification of bikes and peds
At locations that support installation of 2 units
-Passive Infrared Detection (2 sets)
-No classification possible
At locations that do not support 2 units
■Time stamped
-Downloadable data

Weekday Bikes

Weekday Peak Hour Bicycle Count (7 AM to 9 AM) $0-10$ $11-25$ $26-50$ $51-100$ $101-210$

Weekday Pedestrian

The Strand - Daily Pedestrian and Bicyclist Volume Fluctuation

Rose Canyon Bike Path/ Gilman
Daily Pedestrian and Bicyclist Volume July 2007

Mission Beach Boardwalk - Daily Pedestrian and Bicyclist Volume July - August 2007

Rose Canyon Bicycle Path - Wednesday June 13 ${ }^{\text {th }}$
Commuter, low density, few destinations

Mission Beach Bicycle Path - Wednesday June 13 ${ }^{\text {th }}$
Recreational, many destinations

Conclusions: Corridor Demand

- Limitations of automatic counters
- Errors at very high volumes
- Difficulty counting on-street bicycles
- Impact of special events and 'pulsing'
- Variability based on facility location
- Visitors/aesthetics
- Recreation v. commuter

Background Factors

Socio- economic	Population under 18 Population over 65 \# households with no vehicle
Built Environment	Single family unit density Multi-family unit density Population density Street network length \# transit stops
Travel Characteristics	\# transit commuters \# walking commuters Transit ridership

Analysis: Key Variables

■ Employment Density R = . 976

- Class I bike path within $1 / 4$ mile $R=.879$

Analysis: Estimating Wild Cards

- Topography
- Climate
- Security
- Traffic/crossings
- Facility quality
- Aesthetics
- Special events, 'pulsing'
- Land use/urban design

Summary: National Documentation Project

- A low cost, effective method of documenting the levels, trends, and factors influencing walking and bicycling
- More data is needed
- Funding being sought

Recommended Next Steps

- Assemble a Working Group of interested researchers to collaborate on and produce applied research
- Fund and develop a Bicycle/Pedestrian Traffic Monitoring Guide and research to develop an area wide and location specific estimating tool
- Work towards an accepted convention
- Promote research results that show the role of walking/bicycling in transportation

Summary

More information or to participate:
Alta Planning + Design
www.altaplanning.com
Michael Jones
(415) 482-8660

Institute of Transportation Engineers
http://www.ite.org/councils/Ped Bike/trips.asp

